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The velocity field near moving contact lines
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The dynamics of a spreading liquid body are dictated by the interface shape and flow
field very near the moving contact line. The interface shape and flow field have been
described by asymptotic models in the limit of small capillary number, Ca. Previous
work established the validity and limitations of these models of the interface shape
(Chen et al. 1995). Here, we study the flow field near the moving contact line. Using
videomicroscopy, particle image velocimetry, and digital image analysis, we sim-
ultaneously make quantitative measurements of both the interface shape and flow field
from 30 µm to a few hundred microns from the contact line. We compare our data to
the modulated-wedge solution for the velocity field near a moving contact line (Cox
1986). The measured flow fields demonstrate quantitative agreement with predictions
for Ca% 0±1, but deviations of C 5% of the spreading velocity at CaE 0.4. We
observe that the interface shapes and flow fields become geometry independent near the
contact line. Our experimental technique provides a way of measuring the interface
shape and velocity field to be used as boundary conditions for numerical calculations
of the macroscopic spreading dynamics.

1. Introduction

Dynamic wetting, the displacement of one fluid by another immiscible fluid over a
solid surface, controls many natural and technological phenomena, such as coating
deposition and oil recovery. Spreading has been studied extensively both exper-
imentally and theoretically (Dussan 1979; de Gennes 1985; Kistler 1993). When
surface tension forces are important, the interface shape and the local flow field very
near the moving contact line control the macroscopic configuration of the fluid body.
However, identifying the correct modelling assumptions needed for predictive models
of spreading is not trivial in the theoretical development or in experimental
investigation. Theoretically, the central difficulty is the unphysical stress singularity at
the contact line that arises when the classical hydrodynamic assumptions (Newtonian
and incompressible fluids, non-deformable solids, and the continuity of the velocities
at the boundaries) are applied up to and including the moving contact line (Huh &
Scriven 1971; Dussan & Davis 1974). The singularity suggests that very near the
moving contact line, unique microphysical processes other than classical hydro-
dynamics control the fluid motion. While theorists have suggested models for these
unique microphysical processes (Dussan 1976; Huh & Mason 1977; Hocking 1977;
Voinov 1994; de Gennes, Hua & Levinson 1990; Tuck & Schwartz 1990; Yang, Koplik
& Banavar 1992; Thompson & Robbins 1990), none of these ideas have been
experimentally confirmed. Experimentally, direct observation of fluid motion in the
region where the unique hydrodynamics operate (assumed to be less than 10 µm from
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the contact line) is not accessible by conventional accurate optical techniques. Ngan &
Dussan (1979) showed that, in contrast to static wetting, the measurement of an
apparent dynamic contact angle near the contact line strongly depends on the
macroscopic scale. Therefore, such measurements made in one geometry may not be
used to predict the dynamics in a different geometry.

While the identity of the microphysical processes near the contact line is not yet
established, models predicting the macroscopic spreading process have been reported
(Hocking & Rivers 1982; Cox 1986; Dussan, Rame! & Garoff 1991). Based on matched
asymptotic expansions, these models assume that information about the unique
hydrodynamics is transferred from an inner region very near the moving contact line
(where the unique microphysical processes operate), through an intermediate region
(where surface tension and viscous forces dominate), to an outer region (where the
macroscopic geometry dominates). In these models, the detailed nature of the inner-
region hydrodynamics need not be specified, only its asymptotic behaviour must be
established. The asymptotic solution of Dussan et al. (1991) describes the dynamic
interface shape in the intermediate and the beginning of the outer regions, at zero
Reynolds number, in the limit of capillary number CaU 0. Chen, Rame! & Garoff
(1995) established the validity and limitations of the predictions for the interface shape.
For poly(dimenthylsiloxane) (PDMS) spreading on the clean surface of a Pyrex tube,
this model describes the interface shape at 20% r% 400 µm up to Ca¯ 0.1, where r is
the distance from the contact line. Systematic breakdown has been found for higher
Ca.

In this paper, we describe our study of the flow field near the moving contact line.
We compare our experimental measurements to the model of Cox (1986) which
assumes that the flow field near the moving contact line is controlled by the local
geometry of the wedge-like region formed between the solid surface and the liquid}air
interface. This local flow field is, therefore, independent of the macroscopic geometry
of the spreading fluid body. The velocity gradients of the flow field generate the viscous
forces which bend the interface beyond the curvature caused by the static pressure
jump across the interface. In the polar coordinate system illustrated in figure 1, the
velocity field is

�h
r
¯

�
r
(r,φ,β)

U
¯

β cosφ­φ sinβ sin (φ®β)®sinβ cos (φ®β)

∆
, (1)

�h φ ¯
�φ(r,φ,β)

U

¯
®β sinφ­φ sinβ cos (φ®β)

∆

­r 0dβ

dr1 0
2 sin#β(β sinφ®φ sinβ cos (φ®β))

∆#

®
sinφ®φ cos (2β®φ)

∆ 1 , (2)

where ∆3β®sinβ cosβ, U is the velocity of the contact line relative to the solid
surface, (r,φ) is a polar coordinate system with the origin at the contact line and the
solid at φ¯ 0, and φ¯β(r) is the location of the interface. In (1) and (2) the shape of
the interface influences the velocities. The capillary number enters indirectly through
the interface shape. All the velocities in the rest of this paper are scaled with the
spreading velocity, unless the units are specified after the value of the velocity.

The flow described by (1) and (2), called ‘modulated-wedge’ flow in the rest of this
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paper, is based on zero-Reynolds-number flow in a fixed-angle wedge derived by
Moffatt (1964) and Huh & Scriven (1971). While compatible with the model for the
interface shape discussed above, this modulated-wedge flow field model is much more
general. In the modulated wedge, the boundaries can be liquid}air or solid}liquid
interfaces. The only restrictions are that : (i) the region described by the model must be
much smaller than any other length scale of the system; (ii) the shape of the interface
must be a slowly changing function of r. The physical bases of these two assumptions
for the modulated wedge solution are the following.

(i) Dussan & Davis (1974) showed that all flows of incompressible fluids undergoing
two-dimensional Stokes flow and obeying the no-slip condition at the solid}liquid
interface have the following structure near a moving contact line :
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macroscopic contribution, �
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(r,φ), must decay to zero as rU 0. The rate at which

�
R
(r,φ)U 0 as rU 0 is controlled by the smallest length scale of the problem where

departures from the limiting wedge geometry occur (e.g. tube radius, container
dimensions).

(ii) This argument extends to the case of the modulated-wedge flow, where the extra
assumption that the square of the dimensionless interface curvature (dβ}d ln r)#' 1
must hold. The modulated-wedge solution is a perturbation of the fixed-angle wedge
solution valid when (dβ}d ln r)#' 1. In this approximation, the flow at any distance
r¯ r* is equal to the fixed-angle wedge flow that would develop if the fixed wedge angle
were β(r*). φ¯β(r) is the shape of the boundary satisfying (dβ}d ln r)#' 1, hence the
term ‘modulated wedge’. Any portion of the interface where (dβ}d ln r)# is not small
represents a departure from the geometry required for the modulated-wedge theory to
describe the flow. Thus, the distance from the contact line where this departure occurs
introduces a new macroscopic length scale. In order for the flow to be described by this
theory, we must move toward the contact line away from the region where (dβ}d ln r)#
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is not small so that �
R
(r,φ) makes a negligible contribution to the total flow �. Thus,

the effect of violating (dβ}d ln r)#' 1 at one location spreads beyond this location,
causing a non-local breakdown of the modulated wedge approximation.

We explore the fundamental hydrodynamic phenomena in the region within the first
few hundred microns from the moving contact line, which bridges from the microscopic
to the macroscopic scales of the fluid body spreading on solid surfaces. In this work,
we measure the flow fields near the contact line and compare the data to the
modulated-wedge model. For the first time, simultaneous measurements of the
interface shape and the velocity field are performed near the moving contact line. By
direct comparison between the data and the model, we test the validity of the model.
We also investigate the geometry-free portions of the interface shape and flow field
data. These geometry-free data provide boundary conditions for predictive calculations
of spreading.

In the next section, we describe our experimental set-up and data acquisition. We
emphasize the error analyses which are crucial to the conclusions we draw later. Our
results are presented in §3. We first show some general features of the flow field near
the moving contact line and then compare the data to the modulated-wedge solution.
Finally, we analyse the geometry-independent flow fields as well as the interface shapes.
We summarize our conclusions in §4.

2. Experimental

We make simultaneous measurements of the liquid}air interface shape and liquid
velocity field near the moving contact line. Measurements are achieved by immersing
a clean Pyrex cylindrical tube into a bath of PDMS at constant speed. The PDMS wets
the Pyrex completely forming a static contact angle of zero. At the capillary numbers
probed in the experiments discussed in this paper, we have determined that precursing
films are not present on the Pyrex surface ahead of the moving contact line. We employ
videomicroscopy, particle image velocimetry (PIV) and digital image analysis.

2.1. Experimental set-up and data acquisition

The apparatus set-up and material preparation are the same as those used in earlier
studies of dynamic wetting (Marsh 1992; Marsh, Garoff & Dussan 1993; Chen et al.
1995; Rame! & Garoff 1996). During the experiment, the dynamic liquid}air interfaces
are formed by driving a clean Pyrex tube (outer diameter C 1.25 cm) into a bath of
PDMS (60000 cSt at 25 °C) contained in a square glass optical cell (10 cm a side) at
constant speeds (35–150 µm s−"). All the measurements reported here are performed
with the contact line below the bulk fluid level so that both the interface shape and
velocity field can be measured at the same time. Small bubbles and dust particles with
diameter from 3 to 15 µm in the PDMS are the visible tracers used to measure the
liquid velocity fields by PIV (Mertzkirch 1974). We back light the meniscus with
uniform lighting provided by Koehler illumination (Inoue 1986). A long-working-
distance microscope connected to a CCD camera captures the images of meniscus
profiles and seed particles in the liquid. The digitized images are then stored in the
computer for further analysis. See figure 2 for a typical image.

The data analysis involves finding the shape of the interface and the position of the
particles as a function of time. We first use the frame grabber of the computer to
capture a sequence of frames separated by equal time intervals. The time interval ∆t
is varied depending on the immersion speed of the tube so that the distance between
two consecutive data points is roughly the same at all speeds. For Ca¯ 0.10, ∆t is
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F 2. Typical image with enhanced contrast. Interface in capillary depression. Dark regions are
solid surface and air. Bright region is liquid. Some small seed particles can be seen inside the liquid.
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F 3. A typical flow field near the moving contact line at Ca¯ 0.1. The solid line represents
the solid surface and the liquid}air interface. The bold arrow marks tube immersion velocity,
U¯ 35 µm s−". Only every fifth data point is shown.

about 0.60 s ; for Ca¯ 0.43, ∆t is about 0.10 s. Steady-state conditions are ensured by
checking that the interface shape stays the same over the sequence of frames. The
digitized image consists a 640¬480 array of grey levels. The interface location is
obtained as the set of points with the highest grey level gradient in the same manner
as in previous studies (Marsh et al. 1993; Chen et al. 1995). Particle images are typically
3–10 pixels across. The particle positions are determined by identifying the centre of the
particle image by eye. The velocity is the local first derivative of position with respect
to time.

Figure 3 is an example of the measured vector velocity field. Full two-dimensional
plots of the difference between two vector velocity fields are hard to interpret. Thus, we
plot the magnitude and direction of the vector field differences as a function of r only,
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without regard to the polar variable. When important information is contained in the
polar variations, we note them. We define the distance of the particle from the contact
line, r, as positive as a particle approaches the contact line and negative as it moves
away. Evidently, data points with positive r come from roughly the upper half of the
fluid wedge, and with negative r from the lower half of the fluid wedge. This produces
plots such as figure 4. There will be smooth solid lines on all the figures showing the
data. These are obtained by best fitting the data with a second- or third-degree
polynomial. These lines are fit to data points at r" 0 and r! 0 separately. They
represent the average of data in the upper and lower halves of the wedge space and
clarify the trends in the data clouds.

The uncertainties and the reproducibility of the data are crucial to the conclusions
we draw. In the rest of this section, we discuss and evaluate the random and systematic
uncertainties. The error analyses of the interface shape data are the same as we
described in Chen et al. (1995). For the velocity data, we first discuss the uncertainties
in the measured velocity. This allows us to evaluate the significance of differences
between velocity data sets. Then, we analyse the uncertainty in the theoretical velocity
which arises from the experimental input needed to calculate the theory. This allows
us to evaluate the deviation of the experimental data from the predictions of the
modulated-wedge model.

2.2. Uncertainties in experimental data

The random errors in velocity data arise from the particle position determination and
the uncertainties in time intervals between each frame. Typically, the uncertainty of a
position datum is ³0.5 pixel (C 0.6 µm in most of our runs) in both the x- and y-
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directions. We estimate the time interval uncertainty to be half the time of a video
frame, ³0.017 s. The particle trajectories cannot contain spatial variations with
wavelengths on the order of the spacing of the data points, typically C 20 µm. Thus,
we can safely smooth the random scatter of the data by fitting each data point and four
of its neighbouring points (two on each side) to a second-degree polynomial (Savitzky
& Golay 1964). The differences between smoothed and original data randomly scatter
around zero, showing that no systematic distortion is introduced by the smoothing
process. The velocities are then calculated by taking the first derivative of the smoothed
position data with respect to time. The smoothing process greatly reduces the
uncertainties in velocities to ³0.01 in the scaled magnitude and ³1.5° in the direction.

There are four sources of systematic uncertainty in the velocity measurements : (i)
convective flow of the PDMS due to room temperature gradients ; (ii) inertial effects
causing the particles to fail to follow fluid point trajectories, especially as the particle
turns sharply near the moving contact line ; (iii) particles moving in a plane that is not
exactly parallel to the focal plane; (iv) uncertainty in the contact line position. We
estimate the size of each of these systematic errors and determine the uncertainties they
cause in the measured velocity.

(i) We observe a macroscopic flow across the glass container even when the tube is
not moving. Its magnitude is less than 1 µm s−" and gets much smaller near the solid
tube surface. The general flow forms loops on the scale of the container, and may move
either clockwise or counterclockwise. Since the Pe! clet number, PeC 10', the observed
particle motion is not particle diffusion. Analyses of the temperature gradients across
our cell (% 0±01 °C), the density-driven and Marangoni-driven flows for our problem,
indicate that this fluid motion is convection due to density gradients in the PDMS.
While 1 µm s−" is a typical convective velocity, it decreases by a factor of C 30 within
1000 µm from the tube surface. The convection in the region near the tube surface
(where our measurements concentrate) will then be less than 0.001 of the tube velocity
and therefore may be ignored compared to other uncertainties in the experiment.

(ii) To accurately map the fluid flow fields, our particles must follow fluid elements
in the time interval of each velocity measurement. The inertia of the particles does not
cause a significant deviation of the particle from the fluid point trajectory over the time
of one velocity measurement (five adjacent position data). The Reynolds number based
on the size and the density of the particle is C 10−). Thus, particles will follow fluid
point trajectories through curved streamlines, at least for the time of the measurement.
We can further justify neglecting inertial effects by considering the worst case in our
experiment: the motion of particles near the moving contact line where the velocity
gradient is the greatest. As the particle turns near the corner, the viscous force balances
the centripetal force. Assuming the particle is spherical, this balance implies

m
�#
particle

L
C 6πRµ r�

particle
®�

fluid
r, (4)

where L is the radius of curvature of the fluid trajectory, R is the radius of the particle
and m the mass of the particle. For typical values in our experiment (RC 10 µm,
�C 100 µm s−", LC 10 µm near the contact line), (4) implies that the particle velocity
should vary from the fluid velocity by 10−( µm s−" in the direction towards the contact
line. This is beyond the detectability limit of our experiments.

(iii) Because of the depth of field of the microscope, we observe particles within
C³200 µm of the focal plane. If a particle moved outside the focal plane but within
the depth of field, the particle image would remain relatively sharp. Typically, in our
experiments, a particle image does not change noticeably as the particle moves across
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F 5. Effect of particle outside of the focal plane. O: Actual particle position. A: Apparent
position. B: Position producing correct theoretical velocity.

the field of view (C 800 µm). Thus, the velocity component normal to the focal plane
can be no more than 1.5% of the component parallel to the focal plane. Therefore,
although the flow field is three-dimensional due to our experimental geometry, the
velocity component normal to the focal plane is not significant.

Because the microscope only shows the particle image projected on the plane parallel
to the focal plane, the observed distance travelled by particles is the projection of the
real distance on the focal plane (see figure 5). This projection makes the velocity
magnitude appear smaller. Given the tube radius of 1.25 cm and the field of view of
800 µm, the measured velocity is lower than the real velocity by ! 0.01%. This is also
beyond our detectability and can be neglected in the measurements.

(iv) The last systematic error involved in the data comes from the uncertainties in
contact line position. We assign a ³2-pixel error bar (determined by the width of the
transition area between the brightest and the darkest regions on the image) to both the
x- and y-positions of the contact line. We look for the most likely contact line location
by using mass conservation. Since there should be no mass sinks or sources in the
experiment, the net flow through a closed surface should be zero. For simplification,
we choose the closed surface formed by the tube surface, the liquid}air surface, and a
circular arc with its centre at the contact line. With error-free velocity measurements,
only the correct contact line position gives zero experimental net flow through this
closed surface. Thus, we find the most likely experimental contact line position by
minimizing the total flow through the closed surface among all the possible contact line
positions. The departure from zero of the minimized net flow comes from the
uncertainties in the velocities. Taking the cylindrical geometry effect (see §3.2) into
account, the final result indicates that all contact line positions within the 5¬5 box are
statistically indistinguishable and must be considered valid.

The uncertainty in the contact line position moves the interface shape data slightly,
causing statistically insignificant changes in the fitting parameter, ω

!
(% 0.01°) and

in χ# for the fit of the interface data (Chen et al. 1995). It does not change the x-
and y-components of the measured velocity. However, the contact line position
changes the spatial position relative to the contact line assigned to each velocity datum.
To probe the effect of the contact line uncertainty on the velocity field, we subtract the
same data set for two different, but possible, contact line positions. The subtraction is
the difference of the velocity at the same spatial position relative to the contact line,
using linear interpolations to provide data points at the same (r,φ) position. At Ca¯
0.10, the differences are less than ³0.01 in magnitude and ³0.5° in direction. At
Ca¯ 0.43, the corresponding uncertainties are ³0.002 and 0.2°. The impact of the
contact line uncertainties correlates with the velocity gradient. Because the velocity
gradients are large near the contact line, the contact line uncertainties have more
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Ca Component ®200! r! 0 µm 0! r! 200 µm r" 200 µm

0±10 Magnitude ³0.04 ³0.01 ³0±005
Direction ³3° ³3° % 1.50°

0.43 Magnitude ³0.02 ³0.01 ³0.005
Direction ³2° ³2° % 1.50°

T 1. Uncertainties in theoretical velocities due to contact line positions

impact on the velocity near the contact line than far away. Likewise, because the
velocity gradients at comparable distance from the contact line are smaller at higher
Ca, the velocity error due to the contact line uncertainty is smaller at Ca¯ 0.43 than
at Ca¯ 0.10.

Finally, we determine the experimental reproducibility of the data by subtracting
data sets taken from different runs but identical Ca. As shown in figure 4, the data sets
at Ca¯ 0.43 show a systematic difference of less than 0.002 in the magnitude and 0.2°
in the direction. This reproducibility is consistent with the potential systematic errors
described above and is dominated by the uncertainties in the contact line position. The
reproducibility at other Ca is similar to that at Ca¯ 0.43.

2.3. Uncertainties in theoretical �elocities

In this subsection, we discuss the random and systematic uncertainties in the velocities
predicted by (1) and (2). These uncertainties arise from the uncertainties in the
experimentally measured spatial position and interface angles which are inputs used to
evaluate the velocity.

The random uncertainty in the theoretical velocities arises from the standard
deviation of the input interface angle, β(r), of about 0.5° due to random pixel noise. This
random uncertainty propagates through the modulated-wedge solution and produces
an uncertainty of ³0.002 in the magnitude and ³0.5° in the direction of the predicted
velocity.

There are two sources of systematic uncertainty. (i) Uncertainties in the contact line
position change the input interface angles. Thus, each choice of contact line position
leads to a systematically different theoretical velocity field. (ii) When particles move
outside of the focal plane, the apparent particle position is shifted in the negative x-
direction relative to the real particle position. Each of the uncertainties is discussed
below.

(i) The input interface angle β for the theory is determined as

β
i
¯ arctan 0yi

®y
cl

x
i
®x

cl

1­π}2, (5)

where (x
i
, y

i
) is the position of the interface and (x

cl
, y

cl
) is the position of the contact

line. The uncertainties in the contact line position, ³2 pixels, move β
i
systematically.

This effect is not uniform in r. The interface shape difference for two possible contact
line positions stays below 0.5° for r" 200 µm and increases rapidly to 1° at Ca¯ 0.10
and to 3° at Ca¯ 0.43 as r gets smaller. These uncertainties in the β

i
lead to the

theoretical velocity uncertainties (see table 1). Statistically significant uncertainties
appear at ®200! r! 0 µm for the velocity magnitude and ®200! r! 200 µm for
the velocity direction.

(ii) Since some particles move in planes which are not parallel to the focal plane (see
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figure 5), the positions of these particles appear closer to the contact line than they
actually are. Although this position offset does not affect the measured particle velocity
within our detectability (see §2.2), it causes systematic changes in the theoretical
velocity, especially near the contact line where the velocity gradient is the highest and
a small shift in position causes a large change in the theoretical velocity. The position
offset is in the negative x-direction and we estimate that it is smaller than 1.5 µm in
most of the experiments. The magnitude of the calculated velocity thus is systematically
higher by C 0.02 than the correctly predicted velocity at small r! 0; and the direction
is systematically off by C®2° at small r (both r! 0 and r" 0) (see figure 6 for
example), where the velocity gradient is the highest. This systematic error is smaller at
higher Ca since the velocity gradient sampled by observable particles is smaller.

We have direct experimental evidence of this systematic error in theoretical
velocities. We track two particles following the same apparent fluid trajectory at
different times in one experiment. Since the particles follow the same apparent
trajectories, they should show the same deviation from the model. One particle has a
slightly fuzzy image, indicating that it did not travel in the focal plane. It shows
deviations (the data minus the theoretical velocity evaluated at the apparent particle
position) that are compatible with the particle offset error shown in figure 6. The other
particle has a sharp image, indicating that it travelled in the focal plane. It shows no
deviation all the way to the closest distance to the contact line.

The largest errors due to particle position offset appear at negative small r and low
Ca. This error can be detected more readily than other errors since it shows a negative
deviation in the magnitude and positive in the direction for small r along a single
trajectory. Since most of the particles are not precisely in the focal plane, most data
points in the deviation plots at small r are contaminated to some extent by this error.
Some particles show a larger effect. We have kept all the data points and will note those
trajectories with the largest position errors in the deviation plots.
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Causes Ca Component ®200! r! 0 µm 0! r! 200 µm

Measured Contact line 0.10 Magnitude ³0.01 ³0.01
velocity position Direction ³0.5° ³0.5°

0.43 Magnitude Not significant Not significant
Direction

Predicted Contact line 0.10 Magnitude ³0.04 ³0.01
velocity position Direction ³3° ³3°

0.43 Magnitude ³0.02 ³0.01
Direction ³2° ³2°

Motion outside 0.10 Magnitude ®0.02 Not significant
focal plane Direction ­2° ­2°

0.43 Magnitude Not significant Not significant
Direction

T 2. Statistically significant systematic errors

Table 2 summarizes all statistically significant systematic errors, i.e. those equal to
or larger than the random error (0.01 in magnitude and 1.5° in direction). The
information in table 2 enables us to compare two data sets, or a data set and its
corresponding theoretical velocity field. Two data sets are statistically the same if their
systematic difference is smaller than 0.01 in the magnitude and 1.5° in the direction. As
we compare one data set and its corresponding theoretical velocity field, at small r, we
allow ³0.04 and ³3° for Ca¯ 0.10, ³0.02 and ³2° for Ca¯ 0.43, due to the
uncertainties of the contact line positions. We also allow ®0.02 and ­2° at small r for
Ca¯ 0.10, due to particles travelling outside the focal plane. Note that, while the
contact line effect is fully random with respect to all possible contact line positions, the
particle position offset causes systematic deviation at small r and small Ca and the
effect has unique sign.

3. Results and discussion

3.1. General characteristic of the �elocity field

The measured velocity fields confirm the qualitative features of previous studies. Figure
3 illustrates the characteristic rolling type of motion near the moving contact line. This
agrees with the qualitative measurements made by Dussan & Davis (1974) using food
dye. Figure 7 shows that the velocity component tangential to the solid surface
approaches the solid velocity at several locations on the solid surface at Ca¯ 0.43.
These results show that the no-slip boundary condition holds at least as close as
C 100 µm from the moving contact line. Thus, the no-slip assumption of the classical
hydrodynamic model holds at 100 µm for Ca¯ 0.43. The data point taken at 2 cm
below the contact line demonstrates the no-slip condition without extrapolation and
verifies our experimental technique.

3.2. Comparison between data and theoretical �elocity field

To test the modulated-wedge solution, we compare the measured and predicted flow
fields. We evaluate the theoretical velocity at the same spatial position as the
experimental data point. In addition to the spatial position, the input to the theory also
includes the measured interface polar angle β(r). To identify systematic deviations of
the data from the theory, we plot the differences of the data from the theory against
the distance from the contact line, r.
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F 8. Deviation plots at Ca¯ 0.10 for 1 in. diameter tube. Solid circles and squares are two
particles possibly out of focal plane.

Before discussing our results, we address the discrepancy in the flow field due to the
fact that our experimental geometry is axially symmetric and the geometry assumed in
the modulated-wedge model is planar. While a flat plate is the ideal solid to mimic this
planar geometry, optical difficulties associated with using a flat plate (e.g. focusing on
a two-dimensional liquid}air interface, finding the correct contact line position) lead us
to use a large-radius cylinder. As a result, the two-dimensional wedge flow of the model
is a good approximation to the experimental flow only for sufficiently small distances
from the contact line.

The velocity fields in the planar and axially symmetric geometries differ because the
effective area moving away from the solid increases in the cylindrical geometry but



The �elocity field near mo�ing contact lines 61

0.10

0.05

0

–0.05

–0.10

10

5

0

–5

–10
–200–400 0 200 400

r (lm)

D
v di

r(
de

g.
)

D
v m

ag
/U

F 9. Deviation plots at Ca¯ 0.43. Data for 1 in. diameter tube. Solid line : 2nd-order
polynomial fit to data from 1 in. diameter tube. Dashed line : 2nd-order polynomial fit to data from
2 in. diameter tube.

stays constant in the two-dimensional planar geometry. By mass conservation, for the
same solid velocity, the fluid velocity in the cylindrical geometry is lower than in the
planar geometry. Thus, the axial symmetry in our experimental geometry introduces an
artifact as we test the validity of the modulated-wedge solution. To estimate this effect,
we compare the velocities measured with a 1 in. diameter tube and a 2 in. diameter
tube. At Ca¯ 0.10, the difference is less than 0.01 in the magnitude and 1° in the
direction. This is similar to the uncertainties in the data for ®400! r! 500 µm. At
Ca¯ 0.43, the difference is not negligible, 0.02 in magnitude and 1° in the direction,
and is discussed below.

We can now compare our measurements with the modulated-wedge solution. We
plot the difference between the data and the theory at Ca¯ 0.10 in figure 8. The
deviation in the first 500 µm is within 0.01 for the velocity magnitude, and 1.5° for the
direction. As discussed above, the discrepancy introduced by the cylindrical geometry
is negligible in this region. Thus, at Ca¯ 0.10, the modulated-wedge solution describes
the flow in this region within our detection levels.

Deviation plots at Ca¯ 0.43 are shown in figure 9 for a 1 in. diameter tube. As
shown, the velocity data for the 1 in. and 2 in. diameter tubes differ. Thus, the
deviation from theory for the 1 in. diameter tube must be at least partially due to the
cylindrical geometry effect. For the 2 in. diameter tube, the data still deviate from the
modulated-wedge solution all the way to our inner detectability limit (e.g. ®0.02 in
magnitude at rC 30 µm). This deviation is greater than our uncertainties and is
independent of the contact line position. Thus, the deviations are due to the cylindrical
geometry or to a breakdown of the modulated-wedge solution. For the 2 in. diameter
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tube, at rC 30 µm, the distance from the solid surface is as small as 1}850 of the tube
radius. Therefore, the cylindrical geometry effect is not likely to be significant and the
observed deviation at rC 30 µm and Ca¯ 0.43 probably arises from the breakdown
of the modulated-wedge solution. The deviations from the theoretical flow field at
other Ca tested (0.07, 0.15, 0.20, 0.28) show the same trend as at Ca¯ 0.10 and 0.43,
i.e. as Ca increases, the deviation increases.

As noted in §1, for the modulated-wedge solution to accurately describe the flow,
(dβ}d ln r)# should be ' 1 in a region much smaller than the container dimensions. The
container dimension is C 5 cm (a 10 cm¬10 cm container with the tube at the centre),
which is more than 50 times larger than the observed region near the contact line. To
test for any effects of the container size, we compare the measured interface shapes and
the flow fields with the tube at 5 cm and 2 cm from the container wall at Ca¯ 0.43. We
find no detectable difference for the two measurements, indicating that macroscopic
flows on the container length scale play no detectable role in the region we examine.
Thus, flows at the container length scale do not produce the observed deviations from
the theory. To test the condition (dβ}d ln r)#' 1, we measure (dβ}d ln r)# at Ca¯ 0.10
and Ca¯ 0.43 versus r from our interface shape data. As we see in figure 10, the
local values of (dβ}d ln r)# at C 30 µm are on the same order (C 0.007) for Ca¯ 0.10
and Ca¯ 0.43. Since the theory successfully describes the data at Ca% 0.10 and
r! 500 µm, the breakdown of the theory at Ca¯ 0.43 and small r is not caused by the
local (dβ}d ln r)#. As r increases, (dβ}d ln r)# at Ca¯ 0.43 gets much larger than that
at Ca¯ 0.10. At C 2500 µm, we find a maximum (dβ}d ln r)#C 0.015 for Ca¯ 0.10
and at least C 0.081 for Ca¯ 0.43. Thus, the breakdown of the theory at Ca¯ 0.43
may be the result of the higher (dβ}d ln r)# at larger r. This non-locality of the high-
(dβ}d ln r)# breakdown is consistent with our discussion in §1.

Qualitatively, the interface shape and flow field results are compatible. The interface
shape and modulated wedge solutions both hold in the first 400 µm at Ca% 0.10. Our
previous study of the interface shape shows that the interface-shape theory overpredicts
the interface curvature for Ca" 0.10. In the modulated-wedge theory, the normal
stress, which sets the interface curvature, comes mostly from the fluid pressure
contribution as opposed to velocity gradient contribution, Can[(¡�­(¡�)T)n (� is the
fluid velocity and n is the unit outward normal of the interface). The higher interface
curvature predicted by the interface-shape model requires a larger fluid pressure jump
across the interface than the observed interface curvature. Therefore, taking the air
pressure to be zero for convenience, the fluid pressure predicted by the theory in the
intermediate region is more negative than the actual pressure. This more negative
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theoretical pressure next to the surface creates a higher pressure gradient along the
interface which drives the fluid toward the contact line faster than the observed
velocity. Thus, the higher curvature predicted by the interface shape model leads to a
higher fluid velocity toward the contact line. This agrees with the comparison of our
measured flow field and the predictions of the modulated-wedge solution (see §3.2).

3.3. Geometry freedom

The geometry-independent interface shape and flow field in the intermediate region,
where classical hydrodynamics hold, are the necessary boundary conditions for the
prediction of the macroscopic spreading dynamics. The geometry-free information can
act as the boundary condition at smaller distances from the contact line for numerical
calculations of spreading fluids based on the Navier–Stokes equation and classical
boundary conditions at the solid}liquid and liquid}air interfaces.

Macroscopic length scales and configurations affect the size of the geometry-free
region. These macroscopic geometry-dependent factors are the tube radius, capillary
length, container dimensions, and tube immersion angle. In a geometry-free region, the
interface shape and flow field should be asymptotically insensitive to all these factors.
In the model we employ here, the geometry-free region is the intermediate region (Cox
1986). This region is a wedge-like two-dimensional domain formed by a flat solid
surface and a fluid}fluid interface. In this wedge-like region, the interface shape
behaves as described by equation (1) in Marsh et al. (1993). The flow field is described
by (1) and (2) (the modulated-wedge theory) as discussed in §1. Since the interface
shape and flow field in this wedge-like region represent the limit of all Stokes flows
approaching a moving contact line (Dussan & Davis 1974), the geometry-free
information of the intermediate region enables one to transfer boundary conditions
among different geometries for the same material system.

The geometry-free region should be simultaneously independent of all the
macroscopic geometry factors and is only free from all macroscopic influence in an
asymptotic sense. Experimentally, we can determine this region when the residual
geometry dependence drops below the detection limits of our techniques. We define the
size of the geometry-free region as that of the largest region where the interface shape
and flow field are independent of all macroscopic factors.

In our experiment, we vary the immersion angle, tube radius, and container size. To
find the geometry-free region at Ca¯ 0±43, we perform the following three steps.

(i) As discussed in §3.2, we change the position of the tube relative to the container
wall (i.e. we change the container dimensions) while keeping the tube diameter at
1 in. and the immersion angle at 90°. As the distance of the tube from the container
wall shortens from C 5 cm to C 2 cm, the interface shape and the flow field
are indistinguishable (within our detectability limit) throughout the field of view
(C 1200 µm).

(ii) Using the 1 in. diameter tube, we change the immersion angle of the tube from
90° to 70° in a similar way to Chen et al. (1995). In that work, we showed that the
interface shapes are indistinguishable in the first C 100 µm for the two immersion
angles. Comparison of flow fields requires that the compared flow domains occupy
the same physical space. Therefore, we can only compare flow fields from the tilted
tube measurements in the region where the interface shapes overlap. In this region
(r% 100 µm), the velocity fields are statistically the same for the two immersion angles
(see figure 11) (we allow error bars of 0±01o2 in magnitude and 0±5o2° in direction,
based on error propagation for the difference of two quantities with error bars of
0±01 and 0±5°).
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F 11. Flow field differences from the tilted tube experiments at Ca¯ 0.43.

(iii) As discussed in §3.2, when we change the tube diameter from 1 to 2 in., the
interface shape stays the same whereas the flow field changes significantly. Thus, the
impact of tube radius on the velocity field is stronger than on the local stress normal
to the interface. Though the velocity data within C 100 µm of the contact line for a
1 in. tube are insensitive to the container size and immersion angle, the flow field still
has a residual dependence on the tube radius (see figure 9). Even for the 2 in. tube, the
flow field may still be contaminated by geometry dependence due to the tube size.

This study demonstrates the experimental techniques needed to find the geometry-
free region. At higher Ca where the analytic solutions fail, the experimentally measured
interface shape and flow field in the geometry-free region can provide the boundary
condition for numerical solutions of the Navier–Stokes equation in the intermediate
and outer regions where the classical boundary conditions may be applied at the
solid}liquid and liquid}air interfaces.

4. Conclusions

In this work, we continue our study of asymptotic spreading models (Cox 1986;
Dussan et al. 1991) through quantitative study of the flow field near the moving contact
line. As PDMS spreads on a clean Pyrex surface, we make simultaneous measurements
of the interface shape and flow field in the first few hundred microns from the contact
line.

In our previous work, we showed that the model of the interface shape holds for
Ca% 0±10 and 20% r% 400 µm. In this study, the measured two-dimensional flow field
shows that the no-slip boundary condition on the solid}liquid interface holds at least
as close as 100 µm to the contact line at Ca¯ 0±43. We compare the measured flow
fields to the modulated-wedge solution of Cox (1986) at increasing Ca. We carefully
incorporate experimental error analyses into the results and conclude that the model
holds for r! 500 µm at Ca¯ 0±10. In the same region at Ca¯ 0±43, the model does not
agree with our measurement, at least at our inner detectability limit (C 30 µm from the
contact line). The possible disagreement at Ca¯ 0±43 is due to the liquid}air interface
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violating the assumption (dβ}d ln r)#' 1 of the model. The breakdown is a non-local
effect, i.e. large (dβ}d ln r)# at large r can affect the performance of the modulated-
wedge solution at small r. Since the modulated-wedge theory may break down at
higher (dβ}d ln r)#, care should be taken when using this theory to generate flow fields
as boundary conditions for numerical calculations. However, all the velocity deviations
we present here are ! 5% of the spreading velocity. Depending on the accuracy
requirement, the modulated-wedge theory may still be a good approximation at
CaC 0±4 near the moving contact line.

The results from our interface shape and flow field study are consistent. They both
hold for Ca¯ 0±10 near the contact line, and both overpredict the normal stress in the
vicinity of the moving contact line at higher Ca. The overpredicted normal stress is
consistent with the well-known stress singularity which arises from classical
hydrodynamics.

Beyond the analysis of the analytical models, the results of this study are the
measurement and identification of geometry-free interface shapes and flow fields near
the moving contact line. This geometry-free information constitutes the boundary
condition transferable among different macroscopic geometries. Our experimental
techniques provide a means for determining the geometry-free region. Since the size of
this region in a new geometry need not coincide with that in the experimental
measurement, one can use the theory for the interface shape and flow field together
with the measurement to generate boundary conditions in the wedge-like region of the
new geometry. In this process, the identification of the geometry-free boundary
condition in the new geometry requires that the macroscopic results of the calculation
in the new geometry be insensitive to the location where the boundary conditions are
applied. This lack of the sensitivity is characteristic of the behaviour of the intermediate
region described in the model (Cox 1986; Dussan et al. 1991).

We wish to acknowledge the support of NASA from grant no. NAG3-1390.
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